98彩票电子科技(东莞)有限公司 98彩票电子科技(东莞)有限公司
加入收藏 | 设为首页 | 联系方式
首 页 关于98彩票 材料特性 产品展示 经营范围 新闻中心 行业资讯 人才招聘 客户留言 联系我们
锰锌铁氧体系列
| T型 磁芯
| UU型 磁芯
| ET型 磁性
| UT型 磁芯
| EE型/EF型磁芯
| EI型
| EC型/ER型
| EP型
| EFD型
| EPC型
| RM型
| PQ型
| POT型
镍锌铁氧体系列
| T型
| RH型
| DR型
| R型
| RHW型
| UF型
| TSK型 磁芯
铁粉芯系列
其它系列
东莞市98彩票电子科技有限公司
地  址:东莞市清溪镇大利工业区
电  话:0769-87328599
手  机:13829173201
传  真:0769-87328699
主营产品:软磁铁氧体功率高导磁芯磁环,镍锌磁棒,工字型等

高频磁性元件的磁心材料


摘要:高频磁性元件作为开关电源的重要组成部分,直接影响着开关电源的效率、体积和成本。而磁心材料在很大程度上决定着磁性元件的性能。本文对一些磁件常用软磁材料的基本特性进行了概括介绍,并进一步总结了这些材料的应用。<!--关键词--> 关键词:开关电源、高频、磁性元件、磁心材料 <!--英文摘要-->
Abstract:
Magneticcomponentsaremajorpartsinswitch- modepowersupplythataffectitsefficiency,volumeandcost.Inmuchdegree,thecorematerialcandeterminetheperformanceofmagneticcomponents.Thepaperintroducedsomekindsofsoft -magneticmaterialsandgeneralizedtheirusageinhigh-frequencycomponents.<!--英文关键词--><!--cn_cata_no ,中图分类号; ,文献标识码; ,文章标号 --> 中图分类号: 文献标识码: 文章编号: <!--begin of font define--> 1引言
  高频开关电源作为一种比较新型的直流稳压电源,具有效率高、体积小、重量轻等特点。因此在国际上受到广泛重视,发展迅 速,市场前景广阔。目前,开关电源的研究主要集中在两个方面:一个是对小功率开关电源,如何更大程度地提高频率、提高效率、减小体积和成本、实现集成化; 另一个是对大功率开关电源,如何提高频率、效率及可靠性。这两个研究方向,都牵涉到开关电源中的基本电磁器件(如图1)的研究和开发,而作为决定电磁器件 性能、体积、效率等特性的磁心材料已被广大研究工作者重视。随着材料的组成及生产工艺的改进,性能优良的适于在高频下应用的新型材料和产品不断涌现。本文 将对一些在高频下常用材料的性能、特点及其在低频下的使用情况加以介绍,以便今后在磁件的设计、应用过程中,根据需要选择性能价格比更高的磁心材料。
2高频下使用的磁心材料的特点
图1开关电源中的电磁器件
  由图1可以看出:开关电源中包含有多种用途的电磁器件,本文以电源变压器为例来说明材料的特性。由于主电源变压器有两种 工作情况:即双向激磁状态和单向激磁状态,这里仅以双向激磁的主变压器为例,来叙述适于在高频情况下工作的材料一般应具有的特点。电源变压器磁心的特征参 数可以表示为:
  SCSO=P0(1+1/η)/KuKeBmfJ
式中:SC——磁心有效截面积(cm2);
  SO——磁心窗口面积(cm2);
  η——变压器效率;
  Ku——波形系数;
  Ke——窗口填充系数;
Bm——最大工作磁通密度(T);
f——工作频率(Hz);
J——电流密度(A/mm2);
  PO——输出功率(W)。
  由上式可以看出:在输出功率一定的情况下,要减小电源变压器的体积,即要改变相关的特征参数,可以通过提高最大磁通密度Bm、工作频率f、窗口填充系数Ke(受设备与工艺水平的限制)、提高效率η(即降低损耗)等方法来实现。但是磁心的磁滞涡流
损耗都与工作频率f和工作磁通密度Bm相关。f升高或Bm增大,损耗都会大幅度增加,致使磁心发热严重,这就要求磁心材料电阻率ρ要大,以有效抑制涡流损 耗。为了提高工作磁密Bm,材料的饱和磁密Bs要高,而且为了使磁件能够在比较宽的温度范围内具有良好的工作特性,磁心材料的居里温度Tc要求比较高。作 为传输功率的磁心材料的损耗应该很低。我们知道:大功率、低频下的铁心常采用硅钢叠片组成,硅钢的Bs、磁导率、居里温度都比较高,但电阻率ρ很低,为 (10-5~10-8)Ω-m。工程上常用0.35mm和0.5mm两种规格的硅钢片。叠片的最小厚度决定着材料的上限工作频率,如果要使硅钢工作在 400Hz,叠片的厚度一般为0.1~0.15mm。更薄硅钢片的加工工艺复杂,成本较高,且受到材料性能的限制,难以实现,这就使硅钢片在高频率下的应 用受到限制。
3高频下常用的磁性材料
3.1铁氧体
  铁氧体是一种非金属磁性材料,一般由铁、锰、镁、铜等金属氧化物粉末按一定比例混合压制成型,然后在高温下烧结而成的。 由于它的制造方法与陶瓷相似,所以又称它为磁性瓷,在电性能上它呈半导体特性,外观上它呈深灰色或黑色,硬而且脆。铁氧体有两个突出的特点:一是电阻率 高,二是磁导率高,这使它能够在很宽的频率范围内(从kHz到MHz)广泛应用,而且高频、低功率的磁心都由整块的铁氧体组成。从组成上分,铁氧体可分为 MnZn铁氧体和NiZn铁氧体,它们在性能上存在一定的差异。
  MnZn铁氧体的饱和磁密Bs一般为(0.2~0.35)T,电阻率为(10~103)Ω-m,居里温度在200℃左 右,磁导率高,相对初始磁导率μi可高达10000,适合于1MHz以下做变压器和扼流圈等磁心。NiZn铁氧体比MnZn铁氧体电阻率更高,一般为 (105~108)Ω-m,饱和磁密Bs为(0.3~0.5)T,磁导率比MnZn的低,居里温度高于MnZn铁氧体。它可用在(1~300)MHz的高 频情况,性能优于MnZn铁氧体。但由于我国镍金属含量没有锰的含量丰富,NiZn铁氧体的价格要比MnZn铁氧体高很多。
  值得注意的是:铁氧体的温度特性比较差,随着温度的升高,饱和磁密下降很明显。另外,由于铁氧体的饱和磁密不高(一般小于0.5T),因而它在低频下几乎不能使用。
3.2坡莫合金
  坡莫合金实质上是铁镍(FeNi)合金,其矫顽力很低,而饱和磁密Bs、磁导率和居里温度都很高,接近于纯铁。多元坡莫 合金,初始相对磁导率可达30000~80000,但是电阻率低,在10-7Ω-m左右,它可以被加工成极薄的薄片,所以可用在高达(20~30)kHz 的工作频率。国内工程上常用厚度为0.02mm的坡莫合金薄带,另外也有0.005mm厚的薄带,但由于在磁心的卷绕过程中薄带表面要绝缘,致使它的填充 系数大大降低,因此工程上很少使用。当应用频率超过30kHz以上时,由于坡莫合金的电阻率低,其损耗会明显增加。
3.3非晶、超微晶合金软磁材料
  非晶态金属与合金是70年代才问世的新型软磁材料,它的基础元素由铁、镍、钴、硅、硼、碳等组成。一般地说:非晶态材料 中,原子在空间的排列无秩序,不存在宏观的磁各向异性,没有晶态合金的晶粒、晶界存在,具有比晶体合金好得多的磁均匀一致性,所以它的磁化功率小、损耗很 低,具有很强的耐腐蚀性、耐磨性,电阻率比晶态合金高2~4倍(比铁氧体低104左右)。由于非晶态合金的结构实质上是液体的过冷状态,与玻璃相似,所以 也称为金属玻璃,把其中具有磁性的称为磁性玻璃。非晶合金的硬度很高,是硅钢的5倍,材料对应力特别敏感,经过良好的退火处理,可以使它的磁致伸缩趋于 零。居里温度Tc约为(300~600)℃。特别适合于应用在(20~100)kHz的开关电源磁件中。非晶材料一般可分为铁基、铁镍基、钴基和超微晶合 金。这几类合金各有不同的特点,在不同的方面得到应用。铁基非晶具有较高的饱和磁密(1.4~1.8)T,铁损低、成本低,可广泛用于20kHz以下的配 电变压器、大功率开关电源、脉冲变压器、磁放大器、逆变器等。它代替硅钢做配电变压器,可以大幅度降低空载损耗和噪音,负载损耗和整体重量也会下降,可节 能60~70%,而且降低了对环境的噪声污染。目前,对非晶材料应用于工频配电变压器的研究以美国和日本最为活跃,我国也在80年代中期开展了这方面的研 究和试制。西班牙Bilbao-ABBTrofodlsSA公司最近制造的三相(250~630)kVA非晶变压器性能如表1所示:
表1非晶变压器和硅钢变压器比较
容量(kVA)
非晶变压器
硅钢片变压器
空载损耗(W)
负载损耗(W)
空载损耗(W)
负载损耗(W)
250
160
2300
650
3250
400
210
3650
930
4600
630
300
4930
1300
6500
  铁镍基非晶合金具有中等的饱和磁密(0.7~1.2)T、低的铁损、较高的初始磁导率和很高的最大磁导率,经退火后可以 得到很好的矩形回线,其应用领域可与中镍坡莫合金对应,在音频范围的应用比铁氧体优越。铁镍基高导磁非晶合金广泛用于漏电开关、精密电流互感器铁心及磁屏 蔽等领域。
  钴基非晶合金的饱和磁致伸缩系数为零或接近于零,因此它对应力不敏感。它有极高的初始磁导率和最大磁导率,很低的矫顽力 和高频损耗,饱和磁密为(0.5~0.8)T,性能比铁基非晶合金更好,但成本要比铁基的高很多。它广泛用于高频开关电源、磁放大器、脉冲变压器,工作频 率可达200kHz,是高频下应用的最佳材料。但是由于非晶的电阻率比铁氧体的小得多,所以在高频下涡流损耗很大,要使非晶工作在更高频率还比较困难。
  微晶软磁材料是利用制作非晶带材的工艺,首先获得非晶态材料,再经过热处理后获得直径为10~20纳米的微晶,称为超微 晶材料。它具有优异的综合磁性能:初始磁导率可高达100000,饱和磁密高(1.2T),铁损低等。与非晶相比,除Bs略低于铁基非晶,Hc与钴基非晶 相近,其余都优于各类非晶。在(20~100)kHz,除具有铁镍合金与铁氧体的优势外,还具有比铁镍合金更小的损耗,比铁氧体更高的Bs和理想的热稳定 性。工程上常用的超微晶薄带一般为0.02mm,最高工作频率可达500kHz。因为晶态金属材料与非晶态材料相比,在温度变化大、有冲击和震动情况下的 性能稳定,所以除一些工作环境非常恶劣的情况,或是要求性能高度稳定的军用场合,一般都可以用超微晶代替坡莫合金,超微晶的价格要比坡莫合金低。另外通过 不同的生产工艺可以分别获得具有高矩形系数、高脉冲磁导率、低剩磁等特性。因此可以说这种材料是MHz级以下高频开关电源变压器、电感器及高频脉冲变压器 的首选材料。
  由上可见:非晶、超微晶合金材料的应用极为广阔,已被誉为21世纪的绿色节能材料,它们的应用前景非常光明。
3.4铁粉心材料
  铁粉心材料多年来被广泛用于射频(RF)领域中,现在它作为恒磁通功率磁元件大量地应用在电力电子电路中。它内部固有的 分布气隙使它非常适于做各种储存能量的电感。在需要气隙的情况下,它还可以取代铁氧体和铁合金叠片的应用,作为输出滤波电感、功率因数校正电感、连续模式 的反激式电感及EMI/RFI应用的电感铁心,初始相对磁导率μi在10~100范围内,饱和磁通密度在(0.5~1.4)T之间,矫顽力Hc一般也不 大,在(3.5~10)Oe左右。
4小结
  把工程上常用高频磁性材料的主要特性归纳于表2中,供电源技术人员参考。
  表2工程常用高频磁性材料特性对比表
材料特性
铁氧体
非晶
铁基超微晶
坡莫合金
MnZn
NiZn
铁基
铁镍基
钴基
初始相对磁导率
1000~10000
<2000
×104
×104
8×104
(8~10)×104
104~106
饱和磁密(T)
0.3~0.5
<0.4
1.4~1.8
0.7~1.2
0.6~1.0
1.2~1.4
>0.75
电阻率(Ω??)
10?103
105~108
(1.0~1.6)×10-4
(1.25~1.3)×10-4
(1.5~2.0)×10-4
(0.8~1.0)×10-4
10-5
居里温度(℃)
100~300
100~400
<450
<300
300~450
650左右
560左右
应用频率范围kHz
<100
100~1000
<100
<100
<200
<500
<30
  由软磁铁氧体、非晶、微晶、超微晶材料制作的磁性元件是高频电力电子技术的重要组成部分,它决定着电力电子设备的体积和 效率。磁性材料的性能的高低,是影响电磁器件各项性能和体积的至关重要的决定因素。当电磁器件的工作频率要求很高时,或者要求成本较低时,应当选用铁氧体 材料,但要考虑到它的温度特性的影响。非晶、微晶、超微晶等材料以其优异的性能,在工作环境不太恶劣的情况下,完全可以替代坡莫合金的使用。可以说,高性 能的磁性材料的不断出现,为磁件的发展提供了有利的条件,并给原来在应用上受到限制的一些器件提供了新的发展趋势和应用。了解市。?プ∫磺杏欣?奶跫, 掌握最新材料信息,开发和变革磁性元件已成为我们的当务之急。
[返回]   
98彩票电子科技(东莞)有限公司版权所有@ Copyright 2010 粤ICP备12018255号-1
顾客服务中心:0769-87328599 手机:13829173201 传真:0769-87328699 访问量:  
*本站相关网页素材及相关资源均来源互联网,如有侵权请速告知,我们将会在24小时内删除*  [后台管理]
点击这里给我发消息 业务交谈
<em id="dihqng372"><legend id="ibqkvs825"></legend></em><th id="wqvank726"></th><font id="phgwjp402"></font>

            <optgroup id="fynhnf847"><blockquote id="wldyzm962"><code id="fheoxr985"></code></blockquote></optgroup>

            <span id="pdocmf122"></span><span id="iiwlus248"></span><code id="dfuxwl427"></code>
                        • <kbd id="hqsvpp460"><ol id="yrloya652"></ol><button id="qwsvmf615"></button><legend id="eytiky487"></legend></kbd>
                        • <sub id="mynquu674"><dl id="ljrszd430"><u id="hjrdrb729"></u></dl><strong id="fbpmwd516"></strong></sub>